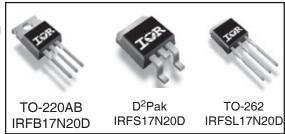


SMPS MOSFET

IRFB17N20DPbF IRFS17N20DPbF IRFSL17N20DPbF

HEXFET® Power MOSFET


Applications

- High frequency DC-DC converters
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	R _{DS(on)} max	I _D
200V	0.17Ω	16A

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	16	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	A
I _{DM}	Pulsed Drain Current ①	64	
P _D @T _A = 25°C	Power Dissipation ⑦	3.8	W
P _D @T _C = 25°C	Power Dissipation	140	
	Linear Derating Factor	0.90	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	2.7	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Typical SMPS Topologies

• Telecom 48V input Forward Converter

IRFB/IRFS/IRFSL17N20DPbF

International TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.25		V/°C	Reference to 25°C, I _D = 1mA ®
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.17	Ω	V _{GS} = 10V, I _D = 9.8A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	٧	$V_{DS} = V_{GS}, I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 200V, V_{GS} = 0V$
				250	μ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150$ °C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA ·	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

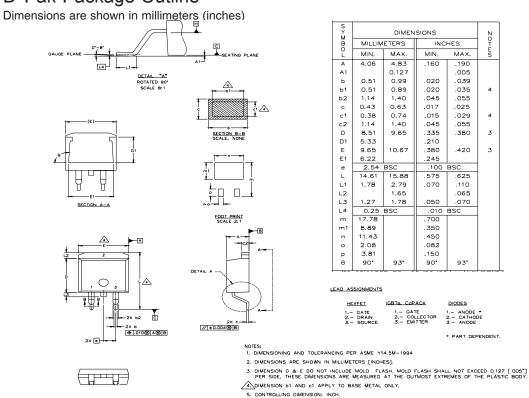
	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	5.3			S	$V_{DS} = 50V, I_D = 9.8A$
Qg	Total Gate Charge		33	50		I _D = 9.8A
Q _{gs}	Gate-to-Source Charge		8.4	13	nC	$V_{DS} = 160V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		16	24		V _{GS} = 10V, ⊕⑥
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 100V
t _r	Rise Time		19		ns	$I_D = 9.8A$
t _{d(off)}	Turn-Off Delay Time		18		110	$R_G = 5.1\Omega$
t _f	Fall Time		6.6			V _{GS} = 10V ④
C _{iss}	Input Capacitance		1100			V _{GS} = 0V
Coss	Output Capacitance		190			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		44		рF	f = 1.0MHz
Coss	Output Capacitance		1340		1	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		76			$V_{GS} = 0V$, $V_{DS} = 160V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		130]	V _{GS} = 0V, V _{DS} = 0V to 160V ⑤

Avalanche Characteristics

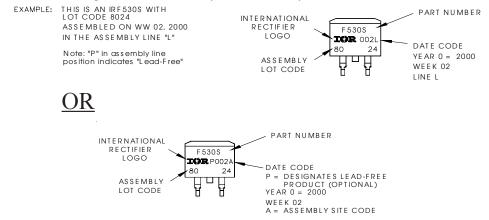
	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@6		240	mJ
I _{AR}	Avalanche Current①		9.8	Α
E _{AR}	Repetitive Avalanche Energy①		14	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
Reuc	Junction-to-Case		1.1	
R _{0CS}	Case-to-Sink, Flat, Greased Surface ©	0.50		°C/W
R _{eJA}	Junction-to-Ambient®		62	
R _{eJA}	Junction-to-Ambient⊘		40	


Diode Characteristics

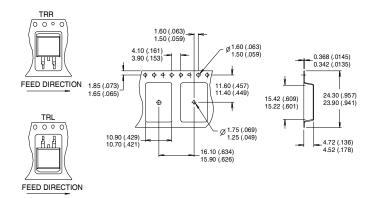
	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			16		MOSFET symbol			
	(Body Diode)			10	16 A	showing the			
I _{SM}	Pulsed Source Current		64	64		64	64		integral reverse
	(Body Diode) ①⑥			04		p-n junction diode.			
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C$, $I_S = 9.8A$, $V_{GS} = 0V$ ④			
t _{rr}	Reverse Recovery Time		160	240	ns	T _J = 25°C, I _F = 9.8A			
Q _{rr}	Reverse RecoveryCharge		900	1350	nC	di/dt = 100A/µs ④			
t _{on}	Forward Turn-On Time	Inti	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)						

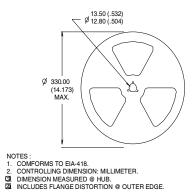

International TOR Rectifier

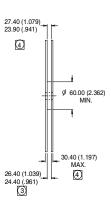
IRFB/IRFS/IRFSL17N20DPbF

D²Pak Package Outline

D²Pak Part Marking Information (Lead-Free)




International TOR Rectifier


IRFB/IRFS/IRFSL17N20DPbF

D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

 $R_G = 25\Omega$, $I_{AS} = 9.8A$.

- ② Starting $T_J = 25$ °C, L = 5.0mH
- ④ Pulse width \leq 300 μ s; duty cycle \leq 2%.
- $^{\circ}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © This is only applied to TO-220AB package
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

